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Appendix A
Statistical analyses

This appendix contains statistical analyses. Thanks to a
personal discussion with Kitchenham the following im-
portant issues related to statistical analyses can be high-
lighted. First, it is worth mentioning that variables used
in statistical tests ought to be independent (even for non-
parametric tests), but we can not be sure that this is the
case for the statistical tests used for mutant reduction
analysis. The question is how to deal with the problem.
In this particular situation, we could use a more stringent
alpha level, because Monte Carlo simulations have sug-
gested that when the observations in a group are correlated
with one another, the nominal alpha level is no longer the
Type I error rate (when a positive correlation is introduced
within a group the Type I error rate increases). Moreover,
in this particular case (i.e. mutant reduction) it would
be perfectly fair to say that the JudyDiffOp algorithm
performed better in terms of total number mutants than
the other analysed algorithms without any statistical anal-
yses, which are here only a kind of double-check whether
real implementations behave as stated in the description
of algorithms. One issue that suggests the problem might
not be addressed by a higher alpha level is that the value
of a random variable should not be known in advance
of measuring it. But for the total number of second or-
der mutants it appears that if one of the algorithms is
used, the value for some of the other algorithms may
be known. Nonetheless, presented test would be an ap-
propriate method to test any new algorithms that use a
different method to construct second order mutants (like
JudyDiffOp). Last but not least, some of the findings can
be seen as dependent but still have merit.

• Lech Madeyski is with the Institute of Informatics, Wro-
claw University of Technology, Poland. E-mail: lech.madeyski
<at>pwr.wroc.pl. WWW: http://madeyski.e-informatyka.pl/

A.1 Statistical analysis of mutants reduction
It appears that the total number of generated mutants
was significantly affected by the applied mutation strategy
(χ2(4) = 16, p < .001) as shown in Table 1. The difference
between the p-values given by the exact and approximate
methods is a cause for concern. As the sample size is
small, the exact test procedures (i.e. exact probabilities of
obtaining the calculated value of the test statistic or any
less likely value) have to be chosen because it is unwise
to rely on the χ2 approximation [1]. The p-value based on
the relevant permutation test is p = .000 < .001 (while
the asymptotic p-value based on the χ2 distribution is
p = .003).

TABLE 1
Friedman test statistics for mutants reduction.

Test Statistics
N 4
χ2 16.000
df 4
Asymp. Sig. .003
Exact Sig. .000

As the overall effect from the Friedman test was sig-
nificant, post hoc analyses were used to follow-up this
finding. In this case, we saw two immediate ways to do
non-parametric post hoc procedures: the Wilcoxon ap-
proach and the Siegel and Castellan approach [2]. Pett [3]
argues that as the Wilcoxon post hoc analyses are affected
by small samples, the researchers may want to use the
approach by Siegel and Castellan [2].

Siegel and Castellan’s procedure [2, p. 180] identifies the
minimum required difference between the means of the
ranks of any two conditions (designated as CDF(R̄a−R̄b)

)
in order for them to differ from one another at the pre-
specified level of significance. The difference between the
means of the ranks of the different groups are compared
to z, adjusted for the number of comparisons performed,
and a constant based on the total sample size and the
number of conditions, k, (k = 5 as there are four SOM
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strategies and the FOM strategy in this case) as presented
in Equation 1.

CDF(R̄a−R̄b)
= zα/k(k−1)

√
k(k + 1)

6N (1)

where α/k(k−1) comes from the fact that we are testing
absolute differences and, therefore, use only upper tail
probability, α/2 = .025, divided by the number of compar-
isons, k(k − 1)/2 = 10, between k strategies (conditions).

For our study α/2
k(k−1)/2 = α/k(k − 1) = .05/5(5 − 1) =

.0025, hence zα/k(k−1) = 2.81. As a result, our critical
difference is, CDF(R̄a−R̄b)

= 2.81
√

5 ∗ 6/6 ∗ 4 = 3.14.
If the difference between mean ranks (presented in Ta-

ble 2) is bigger than or equal to the critical difference (3.14
in this case), then that difference is significant.

TABLE 2
Friedman test mean ranks for mutants reduction.

Mean Rank
FOM 5.00
RandomMix 3.00
Last2First 3.00
JudyDiffOp 1.00
NeighPair 3.00

We concluded that the FOM-JudyDiffOp comparison
(|RFOM−RJudyDiffOp|= 4) is the only one that is greater
than our critical value (3.14). Hence, we can claim that the
intervention (i.e. using a second order mutation strategy
called JudyDiffOp instead of the first order mutation strat-
egy) significantly reduces the number of mutants. This is
consistent with the significance of the initial Friedman test
presented in Table 1.

Usually, it is not helpful to have an effect size for
a general effect tested by the Friedman test; however,
effect sizes for performed comparisons are very informa-
tive [4] and can be obtained from the Wilcoxon signed-
rank tests according to the following equation r = Z√

N
(proposed by Rosenthal [5]) in which Z is the z-score,
and N is the number of observations (in each comparison
we compared two strategies, each of which were measured
on four projects). The effect size r in the comparisons:
FOM-JudyDiffOp, RandomMix-JudyDiffOp, Last2First-
JudyDiffOp, NeighPair-JudyDiffOp are all equal to .65.
However, the reported parametric effect sizes should

be treated with some caution, since whatever led us to
the use of non-parametric methods would also distort the
parametric effect size [6]. Therefore, researchers should
consider (if possible) following up statistically significant
non-parametric p-values with non-parametric effect sizes,
even though the major statistical software programs do
not support them [6]. Vargha and Delaney’s Â12 statistics
is a non-parametric effect size measure recommended by
Leech and Onwuegbuzie [6], Arcuri and Briand [4] as well
as Grissom and Kim [7].

Leech and Onwuegbuzie argue that Â12 is one of the
measures which are the most robust to violations of nor-
mality and heterogeneity of variance. From [8] we can get

five estimated Âiu = [(Ri/n)− 1]/(l− 1) values (where Ri
is the sum of ranks, n is the number of analysed projects
i.e. 4, while l is the number of matched treatments i.e. 5):
Â1u = ((20/4)− 1)/(5− 1) = 1
Â2u = ((12/4)− 1)/(5− 1) = .5
Â3u = ((12/4)− 1)/(5− 1) = .5
Â4u = ((4/4)− 1)/(5− 1) = 0
Â5u = ((12/4)− 1)/(5− 1) = .5

We can then get a value for the point estimation of
the average absolute deviation from .5, AAD =

∑
i|Aiu−

.5|/l = (.5 + 0 + 0 + .5 + 0)/5 = .2. AAD+ .5 = .7 reflects
a close to large level of stochastic heterogeneity, since
according to the guidelines by Vargha and Delaney [8], a
Â12 statistic of .71 indicates a large effect size (see Table
1 [8]).

From [8] we can also get effect sizes in the comparisons:
ÂFOM,JudyDiffOp = ÂRandomMix,JudyDiffOp =
ÂLast2First,JudyDiffOp = ÂNeighPair,JudyDiffOp = 1
reflecting large effect sizes.

The results of the Friedman test indicate that there was
a significant difference in the total number of mutants
generated using the analysed mutation testing strategies
i.e. the FOM and the four SOM strategies (χ2 = 16.00,
p < .001). A post hoc analysis (Siegel and Castellan [2]),
with adjustment due to 10 comparisons to accommodate
increased Type 1 error, indicated that there was a signifi-
cant decrease in the total number of mutants generated
by means of the JudyDiffOp SOM strategy compared
to the FOM strategy (63.5% reduction on average). No
other significant pairwise differences between the analysed
mutation testing strategies were obtained.

The effect sizes r and Â12 for the comparisons
(FOM-JudyDiffOp, RandomMix-JudyDiffOp, Last2First-
JudyDiffOp, NeighPair-JudyDiffOp) return consistent re-
sults, .65 and 1 respectively, and hence the effect sizes are
considered large according to Cohen [9], [10] and Vargha
and Delaney [8], which is a substantial finding.

Finding: The second order mutation strategy
called JudyDiffOp significantly reduced the total num-
ber of generated mutants in comparison with the first
order mutation. The size of the effect was large and
in favour of JudyDiffOp.

The magnitude of the observed effect is an indicator of
practical importance of JudyDiffOp second order mutation
technique, which, in turn, comes from the fact that the
major computational cost of mutation testing is incurred
when running mutants against test cases. Therefore, a way
to reduce the cost of mutation testing is to reduce the
number of mutants we generate [11].

A.2 Statistical analysis for equivalent mutant reduc-
tion
The cross tabulation (Table 3) contains the number of
cases that fall into each combination of categories IsE-
quivalent and IsSOM.
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TABLE 3
IsSOM * IsEquivalent Crosstabulation.

IsEquivalent
False True Total

IsSOM False Count 131 69 200
Expected Count 159.0 41.0 200.0

True Count 664 136 800
Expected Count 636.0 164.0 800.0

Total Count 795 205 1000

We observed a lower ratio of equivalent to non-
equivalent mutants when the SOM strategy was used.
A plausible explanation might be that the number of
equivalent mutants is generally lower than the number of
non-equivalent mutants. Hence, almost every equivalent
mutant will probably be combined with a non-equivalent
mutant. According to Polo et al. [12, Table I], such a
combination will always produce one second-order non-
equivalent mutant.

Pearson’s χ2 test examines the association between two
categorical variables (in this case the type of mutation
strategy, FOM vs. SOM, and whether the generated mu-
tant was equivalent or not). The assumption for χ2 is
that all expected frequencies should be greater than 5. It
should be clear from Table 3 that the smallest expected
count is 41 for equivalent mutants (IsEquivalent=True)
generated by means of FOM (IsSOM=False). This value
exceeds 5 and so the assumption for χ2 that all expected
frequencies should be greater than 5 has been met. The
value of the χ2 statistic (given in Table 4) is 30.066 and
this value is significant (p < .001), indicating that the type
of mutation strategy had a significant effect on whether a
mutant would be equivalent.

TABLE 4
χ2 test to examine the association between two categorical

variables IsEquivalent and IsSOM.

Value df Exact Point
Sig. Proba-
(2-sided) bility

Pearson Chi-Square 30.066 1 .000
Continuity 29.002 1
Correction(a)
Likelihood Ratio 27.376 1 .000
Fisher’s Exact Test .000
Linear-by-Linear 30.036 1 .000 .000
Association
N of Valid Cases 1000

A useful measure of effect size for categorical data is
the odds ratio since, according to Rosenthal [13], it is
unaffected by the proportions in each cell. The odds ratio
is the odds of non-equivalent mutants generated by means
of SOM divided by the odds of non-equivalent mutants
obtained by means of FOM:

oddsnon−equiv. in SOM = # of non−equiv. mutants in SOM
# of equiv. mutants in SOM

= 664
136 = 4.88

oddsnon−equiv. in FOM = # of non−equiv. mutants in FOM
# of equiv. mutants in FOM

= 131
69 = 1.90

odds ratio = oddsnon−equiv. in SOM
oddsnon−equiv. in FOM

= 2.57

There was a significant association between the type
of mutation strategy (i.e. first order vs. second order
mutation) and whether a mutant would be equivalent
(χ2(1) = 30.066, p < .001). This seems to be based on the
fact that, due to the odds ratio, the odds of non-equivalent
mutants were 2.57 times higher if they were generated by
the second order mutation strategy rather than the first
order mutation strategy. It is considered a medium effect
size, according to Rosenthal [13], which is a substantial
finding. It is even more so because handling the equivalent
mutants forms an undecidable problem [14], [15].

Finding: The second order mutation significantly
reduced the number of equivalent mutants in compar-
ison to the first order mutation. The size of the effect
was medium.

A.3 Statistical analysis of the number of live mutants
The number of not killed mutants was significantly af-
fected by the applied mutation strategy (χ2(4) = 14.20,
p < .001) as shown in Table 5.

TABLE 5
Friedman test statistics for the number of live mutants.

Test Statistics
N 4
χ2 14.200
df 4
Asymp. Sig. .007
Exact Sig. .000

As the effect was significant, a post hoc analysis (as
suggested by Siegel and Castellan [2]) was used to follow-
up on this finding.

For our study, the critical difference was CDF(R̄a−R̄b)
=

3.14. Hence, according to the mean ranks presented in
Table 6, we concluded that the FOM-JudyDiffOp compar-
ison (|RFOM − RJudyDiffOp|= 3.75) is the only one that
is greater than our critical value of 3.14. Hence, we can
claim that the intervention (i.e. using the second order
mutation strategy called JudyDiffOp instead of the first
order mutation) significantly reduces the number of not
killed mutants. This is consistent with the significance of
the Friedman test as presented in Table 5.

The effect sizes r in the comparisons (FOM-JudyDiffOp,
Last2First-JudyDiffOp, NeighPair-JudyDiffOp) are equal
to .65 and hence considered large according to Cohen [9],
[10], which is considered to be a substantial finding. The
effect size r in the comparison (RandomMix-JudyDiffOp)
is equal to .39 and, therefore, considered large according
to [9], which is a substantial finding as well.
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TABLE 6
Friedman test mean ranks for the number of live mutants.

Mean Rank
FOM 5.00
RandomMix 3.00
Last2First 3.00
JudyDiffOp 1.00
NeighPair 3.00

We also calculated a non-parametric effect size measure
as proposed by Vargha and Delaney. From [8] we can get
five estimated Âiu values as follows: Â1u = 1, Â2u = .5,
Â3u = .5, Â4u = 0, Â5u = .5
Using these values we can then get a point estimation of

AAD =
∑
i|Aiu− .5|/l = 1/5 = .2. AAD+ .5 = .7 reflects

a close to large level of stochastic heterogeneity [8].
From [8] we can also get effect sizes in the com-

parisons ÂFOM,JudyDiffOp = ÂLast2First,JudyDiffOp =
ÂNeighPair,JudyDiffOp = 4/4 = 1 which reflects large
effect sizes. ÂRandomMix,JudyDiffOp = 3/4 = .75, which
also reflects a large effect size.

Finding: The second order mutation strategy,
called JudyDiffOp, significantly reduced the number of
not killed mutants in comparison with the first order
mutation. The size of the effect was large.

The magnitude of the observed effect is an indicator of
the practical importance which, in turn, comes from the
extremely high cost of manual classification of not killed
mutants (as equivalent or non-equivalent).

A.4 Statistical analysis of the time of mutation testing
process
The number of seconds spent on testing mutants was
significantly affected by the applied mutation strategy
(χ2(4) = 13.600, p = .001), as shown in Table 7.

TABLE 7
Friedman test statistics for the time of mutation testing.

Test Statistics
N 4
χ2 13.600
df 4
Asymp. Sig. .009
Exact Sig. .001

According to the mean ranks shown in Table 8, we can
conclude that the FOM-JudyDiffOp comparison (|RFOM−
RJudyDiffOp|= 4.00) is the only one that is greater than
our critical value of 3.14. Hence, we can conclude that
the intervention (i.e. using the SOM strategy called Judy-
DiffOp instead of FOM) significantly reduced the time
(measured in the number of seconds) spent on testing
mutants. This is also consistent with the results presented
in Table 7.

TABLE 8
Friedman test mean ranks for the time of mutation testing.

Mean Rank
FOM 5.00
RandomMix 3.00
Last2First 3.50
JudyDiffOp 1.00
NeighPair 2.50

Effect size analysis revealed that r equaled .65
and is hence considered large in the comparisons
(FOM-JudyDiffOp, RandomMix-JudyDiffOp, Last2First-
JudyDiffOp, NeighPair-JudyDiffOp).

The five estimated Âiu values can be obtained as follows:
Â1u = 1, Â2u = .5, Â3u = .625, Â4u = 0, Â5u = .375 and
we can then get a value for the point estimate of AAD =∑
i|Aiu − .5|/l = 1.25/5 = .25. AAD + .5 = .75 reflects a

close to large level of stochastic heterogeneity [8].
The effect sizes in the comparisons ÂFOM,JudyDiffOp =

ÂRandomMix,JudyDiffOp = ÂLast2First,JudyDiffOp =
ÂNeighPair,JudyDiffOp = 1 reflect large effect sizes [8].

Finding: The second order mutation strategy
called JudyDiffOp significantly reduced the mutation
testing time in comparison with first order mutation.
The size of the effect was large.

A.5 Statistical analysis of manual mutants’ classifica-
tion time
On the basis of a large sample of 1,000 (200 FOM and
800 SOM) manually classified mutations (e.g. Schuler and
Zeller [16] used a sample of 140 manually classified first
order mutations) we are able to evaluate whether the time
spent on manual mutant classification was significantly
affected by the applied mutation strategy (i.e. FOM and
the different SOM strategies) by means of the independent
t-test to compare two means (a test for normality revealed
that a t-test was suitable to use). We assumed two levels
(i.e. FOM and SOM) in the independent variable (i.e. or-
der of mutation). Table 9 presents the descriptive statistics
(mean value, standard deviation, and standard error) for
FOM and SOM.

TABLE 9
Descriptive statistics of mutants classification time.

Mutation Std. Std.
strategy N Mean Dev. Err.
FOM 200 736.74 331.89 23.47
SOM 800 576.18 296.87 10.50
Total 1000 608.29 310.74 9.83

Levene’s test, presented in Table 10, indicates that: i)
the assumption of homogeneity of variance has not been
violated (p = .30 > .05) and; ii) that using SOM instead of
FOM significantly affected the time needed for the manual
classification of mutants as equivalent or non-equivalent
(t(998) = 6.68, p < .001).
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TABLE 10
Mutants classification time (independent samples test).

Levene’s test t-test for Equality of Means
for Equality Std. 95% CI of the
of Variances Sig. Mean Err. Difference
F Sig. t df 2-tailed Diff. Diff. Lower Upper

Equal variances assumed 1.087 .297 6.677 998 .000 160.559 24.047 113.370 207.748

TABLE 11
Descriptive statistics for mutants classification time for each technique.

95% CI for Mean
Mutation Std. Std. Lower Upper
strategy N Mean Dev. Err. Bound Bound Min. Max.
FOM 200 736.74 331.89 23.47 690.46 783.01 125.00 1600.00
RandomMix 200 574.07 285.60 20.20 534.24 613.89 30.00 1210.00
Last2First 200 574.25 310.47 21.95 530.96 617.54 55.00 1560.00
JudyDiffOp 200 549.34 299.54 21.18 507.57 591.11 10.00 1155.00
NeighPair 200 607.05 290.66 20.55 566.52 647.58 15.00 1300.00
Total 1000 608.29 310.74 9.83 589.01 627.57 10.00 1600.00

TABLE 12
Mutants classification time (test of homogeneity of

variances).

Levene Statistic df1 df2 Sig.
.439 4 995 .781

TABLE 13
Mutants classification time (ANOVA test).

Sum of df Mean F Sig.
Squares Square

Between Groups 4460966 4 1115242 12.061 .000
Within Groups 92002141 995 92464
Total 96463107 999

We can then use the following equation to calculate
effect size:

rFOM vs. SOM =

√
t2

t2 + df
= .21 (2)

The effect size r in the comparison (SOM vs. FOM) is
equal to .21 and, hence, considered medium according to
Cohen [9], [10].

Finding: The second-order mutation strategy sig-
nificantly reduced the time needed for the man-
ual classification of mutants as equivalent or non-
equivalent in comparison with the first-order muta-
tion. The size of the effect was medium.

A more detailed analysis may be conducted by means of
a one-way analysis of variance (ANOVA) where we assume
five levels (i.e. FOM, RandomMix, Last2First, JudyDiffOp,
NeighPair) of the independent variable (mutation strategy
applied).

Table 11 shows descriptive statistics (mean value, stan-
dard deviation, and standard error) for each mutation

testing strategy.
One of the assumptions of ANOVA is that the variances

within experimental conditions are similar. Levene’s test,
which tests the null hypothesis that the variances of the
groups are the same, indicated (as presented in Table 12),
that the assumption of homogeneity of variance had not
been violated (F (4, 995) = .44, p = .78 > .05). Table 13
presents a summary of the ANOVA.

The results show that using different mutation testing
strategies significantly affected the time needed for the
manual classification of mutants as equivalent or non-
equivalent (F (4, 995) = 12.06, p < .001).

Since we have no specific hypotheses about the effect
mutation testing strategies might have on mutants clas-
sification time, we can look at some post hoc tests to
compare all mutation testing strategies with each other.
The Holm-Bonferroni correction (Table 14) was used in
order to control the Type I error rate.

All of the comparisons between the FOM strategy and
higher order mutation strategies (RandomMix, Last2First,
JudyDiffOp, NeighPair) appeared to be highly significant.

We then calculated the effect size on the basis of two
measures of variance, the between-group effect SSM and
the total amount of variance in the data SST (values taken
from Table 13):

r =
√
SSM
SST

=
√

4460966.066
96463107.056 = .22 (3)

This constitutes a medium effect; however, it is even
more interesting to have effect sizes for the comparisons
between FOM and different SOM strategies. Hence, we
used the following equation to calculate effect sizes for
comparisons (the required t-statistic are presented in Ta-
ble 15.):

rcontrast =

√
t2

t2 + df
(4)
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TABLE 14
Mutants classification time (post hoc Holm-Bonferroni correction).

95% CI
(I) Mut. (J) Mut. (I-J) Mean Std. Lower Upper
Strategy Strategy Difference Error Sig. Bound Bound
FOM RandomMix 162.670(*) 30.408 .000 77.123 248.217

Last2First 162.485(*) 30.409 .000 76.938 248.032
JudyDiffOp 187.395(*) 30.408 .000 101.848 272.942
NeighPair 129.685(*) 30.408 .000 44.138 215.232

RandomMix FOM -162.670(*) 30.408 .000 -248.217 -77.123
Last2First -.185 30.408 1.000 -85.732 85.362
JudyDiffOp 24.725 30.408 1.000 -60.822 110.272
NeighPair -32.985 30.408 1.000 -118.532 52.562

Last2First FOM -162.485(*) 30.408 .000 -248.032 -76.938
RandomMix .185 30.408 1.000 -85.362 85.732
JudyDiffOp 24.910 30.408 1.000 -60.637 110.457
NeighPair -32.800 30.408 1.000 -118.347 52.747

JudyDiffOp FOM -187.395(*) 30.408 .000 -272.942 -101.848
RandomMix -24.725 30.408 1.000 -110.272 60.822
Last2First -24.910 30.408 1.000 -110.457 60.637
NeighPair -57.710 30.408 .580 -143.257 27.837

NeighPair FOM -129.685(*) 30.408 .000 -215.232 -44.138
RandomMix 32.985 30.408 1.000 -52.562 118.532
Last2First 32.800 30.408 1.000 -52.747 118.347
JudyDiffOp 57.710 30.408 .580 -27.837 143.257

* The mean difference is significant at the .05 level.

TABLE 15
Mutants classification time (comparison results).

Simple Contrast
RandomMix vs. FOM Contrast Estimate -162.670

Hypothesized Value 0
Diff.(Estimate-Hypothesized) -162.670
Std. Error 30.408
t -5.350
Sig. .000

95% CI for Difference Lower Bound -222.341
Upper Bound -102.999

Last2First vs. FOM Contrast Estimate -162.485
Hypothesized Value 0
Diff.(Estimate-Hypothesized) -162.485
Std. Error 30.408
t -5.343
Sig. .000

95% CI for Difference Lower Bound -222.156
Upper Bound -102.814

JudyDiffOp vs. FOM Contrast Estimate -187.395
Hypothesized Value 0
Diff.(Estimate-Hypothesized) -187.395
Std. Error 30.408
t -6.163
Sig. .000

95% CI for Difference Lower Bound -247.066
Upper Bound -127.724

NeighPair vs. FOM Contrast Estimate -129.685
Hypothesized Value 0
Diff.(Estimate-Hypothesized) -129.685
Std. Error 30.408
t -4.265
Sig. .000

95% CI for Difference Lower Bound -189.356
Upper Bound -70.014

Reference category is FOM

Hence, r in the comparisons are as follows:
rRandomMix vs. FOM = .167
rLast2First vs. FOM = .167
rJudyDiffOp vs. FOM = .192

rNeighPair vs. FOM = .134
The aforementioned effect sizes are considered

small but close to medium (especially in the case of
rJudyDiffOp vs. FOM ) according to Cohen [9], [10].

Finding: Each of the second-order mutation strate-
gies (i.e. JudyDiffOp, RandomMix, Last2First, Neigh-
Pair) significantly reduced the time needed for the
manual classification of mutants as equivalent or non-
equivalent in comparison with the first-order muta-
tion. The size of the effects were considered small to
medium.
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